نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      المصدر
    • اللغة
134,822 نتائج ل "Unmanned aerial vehicles"
صنف حسب:
Modelling Robust Delivery Scenarios for a Fleet of Unmanned Aerial Vehicles in Disaster Relief Missions
Besides commercial and military applications, unmanned aerial vehicles (UAVs) are now used more commonly in disaster relief operations. This study proposes a novel model for proactive and reactive planning (different scenarios) that allow for a higher degree of realism, thus a higher likelihood for a mission of being executed according to the plan even when weather forecasts are changing. The novelty of this study results from the addition of a function of resistance of UAVs mission to changes in weather conditions. We link the influence of weather conditions on the UAV’s energy consumption. The goal is to ensure the completion of planned deliveries by a fleet of UAVs under changing weather conditions before their batteries discharge and to identify the emergency route for returned if the mission cannot be completed. An approach based on constraint programming is proposed, as it has proven to be effective in various contexts, especially related to the nonlinearity of the system’s characteristics. The proposed approach has been tested on several instances, which have allowed for analyzing how the plan of mission is robust to the changing weather conditions with different parameters, such as the fleet size, battery capacity, and distribution network layout.
Remotely Sensed Vegetation Indices to Discriminate Field-Grown Olive Cultivars
The application of spectral sensors mounted on unmanned aerial vehicles (UAVs) assures high spatial and temporal resolutions. This research focused on canopy reflectance for cultivar recognition in an olive grove. The ability in cultivar recognition of 14 vegetation indices (VIs) calculated from reflectance patterns (green520–600, red630–690 and near-infrared760–900 bands) and an image segmentation process was evaluated on an open-field olive grove with 10 different scion/rootstock combinations (two scions by five rootstocks). Univariate (ANOVA) and multivariate (principal components analysis—PCA and linear discriminant analysis—LDA) statistical approaches were applied. The efficacy of VIs in scion recognition emerged clearly from all the approaches applied, whereas discrimination between rootstocks appeared unclear. The results of LDA ascertained the efficacy of VI application to discriminate between scions with an accuracy of 90.9%, whereas recognition of rootstocks failed in more than 68.2% of cases.
Route planning of heterogeneous unmanned aerial vehicles under recharging and mission time with carrying payload constraints
Purpose: We consider the problem of route planning of multiple rechargeable heterogeneous UAVs with multiple trips under mission time and payload carrying constraints. The goal is to determine the types and number of UAVs to be deployed and their flying paths that minimizes the monetary cost, which is a sum of the recharging energy cost of each UAV, the UAV rental cost, and the cost of violating the mission time deadline.Design/methodology/approach: The problem is formulated as a mixed integer programming (MIP). Then, the genetic algorithm (GA) is developed to solve the model and the solutions are compared to those obtained from the exact method (Branch-and-Bound). Novel chromosome encoding and population initializations are designed, and standard procedures for crossover and mutation are adapted to this work. Test problems on grid networks and real terrains are used to evaluate the runtime efficiency and solution optimality, and the sensitivity of GA parameters is studied based on two-level factorial experiments.Findings: The proposed GA method can find optimal solutions for small problem sizes but with much less computation time than the exact method. For larger problem sizes, the exact method failed to find optimal solutions within the limits of time and disk space constraints (24 hours and 500 GB) while the GA method yields the solutions within a few minutes with as high as 49% better objective values. Also, the proposed GA method is shown to well explore the solution space based on the variation of the total costs obtained.Originality/value: The unique aspects of this work are that the model optimizes the sum of three different costs – the electricity recharging cost, the UAV rental cost, the penalty cost for mission deadline violation, and the recharging period based on the remaining energy, the payload capacity, and the heterogeneity of UAVs are incorporated into the model. The model is formulated as a mixed integer programming and the genetic algorithm is developed to solve the program. Novel chromosome encoding and population initializations are designed, and standard procedures for crossover and mutation are adapted to this work.
UAVSwarm Dataset: An Unmanned Aerial Vehicle Swarm Dataset for Multiple Object Tracking
In recent years, with the rapid development of unmanned aerial vehicles (UAV) technology and swarm intelligence technology, hundreds of small-scale and low-cost UAV constitute swarms carry out complex combat tasks in the form of ad hoc networks, which brings great threats and challenges to low-altitude airspace defense. Security requirements for low-altitude airspace defense, using visual detection technology to detect and track incoming UAV swarms, is the premise of anti-UAV strategy. Therefore, this study first collected many UAV swarm videos and manually annotated a dataset named UAVSwarm dataset for UAV swarm detection and tracking; thirteen different scenes and more than nineteen types of UAV were recorded, including 12,598 annotated images—the number of UAV in each sequence is 3 to 23. Then, two advanced depth detection models are used as strong benchmarks, namely Faster R-CNN and YOLOX. Finally, two state-of-the-art multi-object tracking (MOT) models, GNMOT and ByteTrack, are used to conduct comprehensive tests and performance verification on the dataset and evaluation metrics. The experimental results show that the dataset has good availability, consistency, and universality. The UAVSwarm dataset can be widely used in training and testing of various UAV detection tasks and UAV swarm MOT tasks.
Optimal cooperative path planning of unmanned aerial vehicles by a parallel genetic algorithm
The current paper presents a path planning method based on probability maps and uses a new genetic algorithm for a group of UAVs. The probability map consists of cells that display the probability which the UAV will not encounter a hostile threat. The probability map is defined by three events. The obstacles are modeled in the probability map, as well. The cost function is defined such that all cells are surveyed in the path track. The simple formula based on the unique vector is presented to find this cell position. Generally, the cost function is formed by two parts; one part for optimizing the path of each UAV and the other for preventing UAVs from collision. The first part is a combination of safety and length of path and the second part is formed by an exponential function. Then, the optimal paths of each UAV are obtained by the genetic algorithm in a parallel form. According to the dimensions of path planning, genetic encoding has two or three indices. A new genetic operator is introduced to select an appropriate pair of chromosome for crossover operation. The effectiveness of the method is shown by several simulations.
Completion Time Minimization for UAV-UGV-Enabled Data Collection
In unmanned aerial vehicle (UAV)-enabled data collection systems, situations where sensor nodes (SNs) cannot upload their data successfully to the UAV may exist, due to factors such as SNs’ insufficient energy and the UAV’s minimum flight altitude. In this paper, an unmanned ground vehicle (UGV)-UAV-enabled data collection system is studied, where data collection missions are conducted by a UAV and a UGV cooperatively. Two cooperative strategies are proposed, i.e., collaboration without information interaction, and collaboration with information interaction. In the first strategy, the UGV collects data from remote SNs (i.e., the SNs that cannot upload data to the UAV) as well as some normal SNs (i.e., the SNs that can upload data to the UAV), while the UAV only collects data from some normal SNs. Then, they carry the data back to the data center (DC) without interacting with each other. In the second strategy, the UGV only collects data from remote SNs, while transmitting the collected data to the UAV at a data interaction point, then the data are carried back to the DC by the UAV. There are mobile data collection nodes on the ground and in the air, and the task is to find trajectories to minimize the data collection time in the data center. A collaborative strategy selection algorithm, combining a multi-stage-based SN association and UAV-UGV path optimization algorithm, is proposed to solve the problem effectively, where techniques including convex optimization and genetic algorithm are adopted. The simulation result shows that the proposed scheme reduces the mission completion time by 36% compared with the benchmark scheme.
Enabling the Orchestration of IoT Slices through Edge and Cloud Microservice Platforms
This article addresses one of the main challenges related to the practical deployment of Internet of Things (IoT) solutions: the coordinated operation of entities at different infrastructures to support the automated orchestration of end-to-end Internet of Things services. This idea is referred to as \"Internet of Things slicing\" and is based on the network slicing concept already defined for the Fifth Generation (5G) of mobile networks. In this context, we present the architectural design of a slice orchestrator addressing the aforementioned challenge, based on well-known standard technologies and protocols. The proposed solution is able to integrate existing technologies, like cloud computing, with other more recent technologies like edge computing and network slicing. In addition, a functional prototype of the proposed orchestrator has been implemented, using open-source software and microservice platforms. As a first step to prove the practical feasibility of our solution, the implementation of the orchestrator considers cloud and edge domains. The validation results obtained from the prototype prove the feasibility of the solution from a functional perspective, verifying its capacity to deploy Internet of Things related functions even on resource constrained platforms. This approach enables new application models where these Internet of Things related functions can be onboarded on small unmanned aerial vehicles, offering a flexible and cost-effective solution to deploy these functions at the network edge. In addition, this proposal can also be used on commercial cloud platforms, like the Google Compute Engine, showing that it can take advantage of the benefits of edge and cloud computing respectively.
New Strategies for Time Delay Estimation During System Calibration for UAV-Based GNSS/INS-Assisted Imaging Systems
The need for accurate 3D spatial information is growing rapidly in many of today’s key industries, such as precision agriculture, emergency management, infrastructure monitoring, and defense. Unmanned aerial vehicles (UAVs) equipped with global navigation satellite systems/inertial navigation systems (GNSS/INS) and consumer-grade digital imaging sensors are capable of providing accurate 3D spatial information at a relatively low cost. However, with the use of consumer-grade sensors, system calibration is critical for accurate 3D reconstruction. In this study, ‘consumer-grade’ refers to cameras that require system calibration by the user instead of by the manufacturer or other high-end laboratory settings, as well as relatively low-cost GNSS/INS units. In addition to classical spatial system calibration, many consumer-grade sensors also need temporal calibration for accurate 3D reconstruction. This study examines the accuracy impact of time delay in the synchronization between the GNSS/INS unit and cameras on-board UAV-based mapping systems. After reviewing existing strategies, this study presents two approaches (direct and indirect) to correct for time delay between GNSS/INS recorded event markers and actual time of image exposure. Our results show that both approaches are capable of handling and correcting this time delay, with the direct approach being more rigorous. When a time delay exists and the direct or indirect approach is applied, horizontal accuracy of 1–3 times the ground sampling distance (GSD) can be achieved without either the use of any ground control points (GCPs) or adjusting the original GNSS/INS trajectory information.
UAV-Based Intelligent Transportation System for Emergency Reporting in Coverage Holes of Wireless Networks
During critical moments, disaster and accident victims may not be able to request help from the emergency response center. This may happen when the victim’s vehicle is located within a coverage hole in a wireless network. In this paper, we adopt an unmanned aerial vehicle (UAV) to work as an automatic emergency dispatcher for a user in a vehicle facing a critical condition. Given that the UAV is located within a coverage hole and a predetermined critical condition is detected, the UAV becomes airborne and dispatches distress messages to a communication network. We propose to use a path loss map for UAV trajectory design, and we formulate our problem mathematically as an Integer Linear Program (ILP). Our goals are to minimize the distress messages delivery time and the UAV’s mission completion time. Due to the difficulty of obtaining the optimal solution when the scale of the problem is large, we proposed an efficient algorithm that reduces the computational time significantly. We simulate our problem under different scenarios and settings, and study the performance of our proposed algorithm.
A Predictive Control Strategy for Aerial Payload Transportation with an Unmanned Aerial Vehicle
This paper presents the results of a model-based predictive control (MPC) design for a quadrotor aerial vehicle with a suspended load. Unlike previous works, the controller takes into account the hanging payload dynamics, the dynamics in three-dimensional space, and the vehicle rotation, achieving a good balance between fast stabilization times and small swing angles. The mathematical model is based on the Euler–Lagrange formulation and considers the dynamics of the vehicle, the cable, and the load. Then, the mathematical model is represented as an input-affine system to obtain the linear model for the control design. A constrained MPC strategy was designed and compared with an unconstrained MPC and an algorithm from the literature for the case of study. The constraints to be considered include the limits on the swing angles and the quadrotor position. The constrained control algorithm was constructed to stabilize the aerial vehicle. It aims to track a trajectory reference while attenuating the load swing, considering a maximum swing range of ±10∘. Numerical simulations were carried out to validate the control strategy.